Module 8: Angular Momentum - II

8.1
$$L_{\pm} = L_x \pm iL_y = \hbar e^{\pm i\phi} \left[\pm \frac{\partial}{\partial \theta} + i \cot \frac{\partial}{\partial \phi} \right]; \quad Y_{1,-1} = C L_{-}Y_{1,0}$$
. The constant C is given by

(a)
$$C = \frac{1}{\hbar\sqrt{2}}$$

(b)
$$C = \frac{1}{\sqrt{2}}$$

(c)
$$C = \frac{1}{\hbar\sqrt{6}}$$

(d)
$$C = \frac{1}{\sqrt{6}}$$

[Answer (a)]

8.2
$$L_{\pm} = L_x \pm iL_y = \hbar e^{\pm i\phi} \left[\pm \frac{\partial}{\partial \theta} + i \cot \frac{\partial}{\partial \phi} \right]; \quad Y_{3,2} = C L_+ Y_{3,1}$$
. The constant C is given by

(a)
$$C = \frac{1}{\hbar\sqrt{10}}$$

(b)
$$C = \frac{1}{\sqrt{10}}$$

(c)
$$C = \frac{1}{\hbar\sqrt{12}}$$

(d)
$$C = \frac{1}{\sqrt{12}}$$

[Answer (a)]

8.3 For
$$j=\frac{1}{2}$$
; $J_x=\frac{1}{2}\hbar\sigma_x$, $J_y=\frac{1}{2}\hbar\sigma_y$ and $J_z=\frac{1}{2}\hbar\sigma_z$ where σ_x,σ_y and σ_z are Pauli spin matrices. Evaluate $\langle 2|J_x|1\rangle$

(a)
$$\langle 2|J_x|1\rangle = -\frac{1}{2}\hbar$$

(b)
$$\langle 2|J_x|1\rangle = \frac{1}{2}\hbar$$

(c)
$$\langle 2|J_x|1\rangle = -\hbar$$

(d)
$$\langle 2|J_x|1\rangle = +i\hbar$$

[Answer (b)]

8.4 /j,m> are simultaneous eigenkets of J^2 and J_z . Let $|1\rangle = \left|\frac{1}{2},\frac{1}{2}\right\rangle$ and $|2\rangle = \left|\frac{1}{2},-\frac{1}{2}\right\rangle$. Evaluate $\langle 1|J_y|2\rangle$.

(a)
$$\langle 1|J_y|2\rangle = +\frac{i\hbar}{2}$$

(b)
$$\langle 1|J_y|2\rangle = -\frac{i\hbar}{2}$$

(c)
$$\langle 1|J_y|2\rangle = +\frac{\hbar}{2}$$

(d)
$$\langle 1|J_y|2\rangle = -\frac{\hbar}{2}$$

[Answer (b)]

8.5 /j,m> are simultaneous eigenkets of J^2 and J_z . Let $|1\rangle = \left|\frac{1}{2},\frac{1}{2}\right\rangle$ and $|2\rangle = \left|\frac{1}{2},-\frac{1}{2}\right\rangle$. Evaluate $\langle 2|J^2|2\rangle$.

(a)
$$\langle 2|J^2|2\rangle = \frac{3}{4}\hbar^2$$

(b)
$$\langle 2|J^2|2\rangle = -\frac{3}{4}\hbar^2$$

(c)
$$\langle 2|J^2|2\rangle = \frac{1}{2}\hbar^2$$

(d)
$$\langle 2|J^2|2\rangle = -\frac{1}{2}\hbar^2$$

[Answer (a)]

- **8.6** For $j = \frac{1}{2}$; $J_x = \frac{1}{2}\hbar\sigma_x$, $J_y = \frac{1}{2}\hbar\sigma_y$ and $J_z = \frac{1}{2}\hbar\sigma_z$ where σ_x , σ_y and σ_z are Pauli spin matrices. What are the eigenvalues of J_y ?
- (a) The eigenvalues of J_{y} are $\pm \hbar$
- (b) The eigenvalues of J_y are $\pm \frac{i}{2}\hbar$
- (c) The eigenvalues of J_y are $\pm \frac{1}{2}\hbar$
- (d) The eigenvalues of J_y are $\pm i \hbar$

[Answer (c)]

8.7 Assume $j = \frac{3}{2}$. The kets $|1\rangle = \left|\frac{3}{2}, \frac{3}{2}\right\rangle$, $|2\rangle = \left|\frac{3}{2}, \frac{1}{2}\right\rangle$, $|3\rangle = \left|\frac{3}{2}, -\frac{1}{2}\right\rangle$ and $|4\rangle = \left|\frac{3}{2}, -\frac{3}{2}\right\rangle$ are simultaneous eigenkets of J^2 and J_z . Which one of the following answers would be completely correct

(a)
$$J^2 |1\rangle = \frac{3}{2} \hbar^2 |1\rangle$$
 & $J_z |1\rangle = \frac{3}{2} \hbar |1\rangle$

(b)
$$J^{2}|2\rangle = \frac{15}{4}\hbar^{2}|2\rangle$$
 & $J_{z}|2\rangle = \frac{3}{2}\hbar|2\rangle$

(c)
$$J^2 |3\rangle = \frac{15}{4} \hbar^2 |3\rangle$$
 & $J_z |3\rangle = \frac{1}{2} \hbar |1\rangle$

(d)
$$J^{2}|4\rangle = \frac{15}{4}\hbar^{2}|4\rangle$$
 & $J_{z}|4\rangle = -\frac{3}{2}\hbar|4\rangle$

[Answer (b)]

8.8 Assume $j = \frac{3}{2}$. The kets $|1\rangle = \left|\frac{3}{2}, \frac{3}{2}\right\rangle$, $|2\rangle = \left|\frac{3}{2}, \frac{1}{2}\right\rangle$, $|3\rangle = \left|\frac{3}{2}, -\frac{1}{2}\right\rangle$ and $|4\rangle = \left|\frac{3}{2}, -\frac{3}{2}\right\rangle$ are simultaneous eigenkets of J^2 and J_z . Evaluate $\langle 2|J_y|1\rangle$

(a)
$$\langle 2|J_y|1\rangle = -\frac{i\sqrt{3}}{2}\hbar$$

(b)
$$\langle 2|J_y|1\rangle = \frac{i\sqrt{3}}{2}\hbar$$

(c)
$$\langle 2|J_y|1\rangle = \frac{\sqrt{3}}{2}\hbar$$

(d)
$$\langle 2|J_y|1\rangle = -\frac{\sqrt{3}}{2}\hbar$$

[Answer (b)]

8.9 $\Phi(j_1, j_2, j, m)$ are simultaneous eigenfunctions of J_1^2 , J_2^2 , J^2 and J_z ; $\Psi(j_1, j_2, m_1, m_2)$ are simultaneous eigenfunctions of J_1^2 , J_2^2 , J_{1z} and J_{2z} . Now

$$\Phi\left(1,\frac{1}{2},\frac{3}{2},\frac{3}{2}\right) = \Psi\left(1,\frac{1}{2},1,\frac{1}{2}\right)$$

Using above, we get

$$\Phi\bigg(1,\frac{1}{2},\frac{3}{2},\frac{1}{2}\bigg) \; = \; C_1 \quad \Psi\bigg(\ 1,\frac{1}{2},0,\frac{1}{2}\bigg) + \; C_2 \quad \Psi\bigg(\ 1,\frac{1}{2},-1,\frac{1}{2}\bigg)$$

(a)
$$C_1 = \sqrt{\frac{3}{5}}$$
 and $C_2 = \sqrt{\frac{2}{5}}$

(b)
$$C_1 = \sqrt{\frac{2}{3}}$$
 and $C_2 = \sqrt{\frac{1}{3}}$

(c)
$$C_1 = \sqrt{\frac{1}{2}}$$
 and $C_2 = \sqrt{\frac{1}{2}}$

(d)
$$C_1 = \sqrt{\frac{3}{4}}$$
 and $C_2 = \sqrt{\frac{1}{4}}$

[Answer (b)]

8.10 $\Phi(j_1, j_2, j, m)$ are simultaneous eigenfunctions of J_1^2, J_2^2, J^2 and J_z ; $\Psi(j_1, j_2, m_1, m_2)$ are simultaneous eigenfunctions of J_1^2, J_2^2, J_{1z} and J_{2z} . Now

$$\Phi\bigg(2,\frac{1}{2},\frac{3}{2},\frac{1}{2}\bigg) \ = C_1 \ \ \Psi\bigg(\ 2,\frac{1}{2},0,\frac{1}{2}\bigg) \ + \quad C_2 \ \ \Psi\bigg(\ 2,\frac{1}{2},1,-\frac{1}{2}\bigg)$$

j =	$m_2 = 1/2$	$m_2 = -1/2$
$j_1 + \frac{1}{2}$	$\sqrt{\frac{j_1 + m + 1/2}{2 j_1 + 1}}$	$\sqrt{\frac{j_1 - m + 1/2}{2 j_1 + 1}}$
$j_1 - \frac{1}{2}$	$-\sqrt{\frac{j_1 - m + 1/2}{2 j_1 + 1}}$	$\sqrt{\frac{j_1 + m + 1/2}{2 j_1 + 1}}$

Use the Table for Clebsch Gordon coefficients to determine C_1 and C_2 .

(a)
$$C_1 = \sqrt{\frac{3}{5}}$$
 and $C_2 = \sqrt{\frac{2}{5}}$

(b)
$$C_1 = -\sqrt{\frac{2}{5}}$$
 and $C_2 = \sqrt{\frac{3}{5}}$

(c)
$$C_1 = \sqrt{\frac{1}{2}}$$
 and $C_2 = \sqrt{\frac{1}{2}}$

(d)
$$C_1 = \sqrt{\frac{3}{4}}$$
 and $C_2 = \sqrt{\frac{1}{4}}$

[Answer (b)]